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Abstract 

Environmental vibrations often exist in a broadband form. To have a robust performance over 

a wide frequency range, vibration energy harvesters need to be designed to be insensitive to 

excitation frequencies. In this paper, we propose a novel two-degree-of-freedom (DOF) 

piezoelectric energy harvester (PEH) with stoppers that introduce nonlinear dynamic 

interaction between the two DOFs. First, the mechanical model of the 2DOF system with 

stoppers is developed by emulating the impact behaviour as a piecewise linear stiffness and 

the working principle is explained. Subsequently, the analytical solution of the system with 

piecewise linear stiffness is derived using the averaging method and the dynamic response of 

the system is obtained and confirms its wide bandwidth property. Finally, by integrating the 

mechanical system with a piezoelectric transducer, the energy harvesting performance of the 

proposed 2DOF PEH with stoppers is numerically evaluated. The open circuit voltage 

response of the proposed system is compared with that of the conventional linear 2DOF and 

1DOF PEHs. A parametric study reveals the effect of the stopper distance on the energy 

harvesting performance in terms of both the bandwidth and open circuit voltage output. The 

superiority of the proposed system in terms of both power output and operation bandwidth is 

demonstrated. 

Keywords: Vibration based energy harvesting; Linear and nonlinear systems; Piecewise 

function; Averaging method; Piezoelectric; Two degrees of freedom. 

1. Introduction 

Recent advances of low-power microelectromechanical systems open the possibility of 

directly employing energy harvesters as power supplies and getting rid of electrochemical 

batteries. Therefore, energy harvesting has attracted significant research interests in recent 

years [1-4]. Vibration energy harvesters [2] convert and harness energy from vibrations that 

exist ubiquitously in industries and our daily life. Among various energy harvesting 
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approaches, i.e., piezoelectric, electromagnetic and electrostatic transductions, piezoelectric 

energy harvesting has gained much attention due to its high efficiency [5-10]. 

Considering that environmental vibrations often exist with broad spectra, vibration energy 

harvesters need to be designed to be insensitive to excitation frequencies in order to have a 

robust performance over a wide frequency range. Therefore, the operating bandwidth [11] and 

the conversion efficiency [12] (i.e., the power output amplitude) naturally constitute the two 

main concerns in the design of vibration energy harvesters. Traditional linear vibration energy 

harvesters are only efficient near their resonant frequencies and quite sensitive to the variation 

of external excitation frequencies [13, 14]. Even a bit mis-match between the frequencies 

often leads to a significant deterioration of the energy harvesting performance. The power 

extracted in off-resonance conditions is actually quite small for practical use.  

Researchers have explored various ways to improve the energy harvesting performance in 

terms of the operating bandwidth [13, 14]. Kim, Jung [15] designed a two degree-of-freedom 

(DOF) energy harvesting device that uses both the translational and rotational degrees of 

freedom of the proof mass. By tuning the system parameters, the two peaks in power response 

can get closer and thus an increased operating bandwidth can be achieved. Tang and Yang 

[16] introduced a multi-DOF piezoelectric energy harvester (PEH) concept. Through 

attaching some delicately tuned small oscillators to a 1DOF energy harvester, multiple peaks 

in power response can be obtained with negligible sacrifice of power density. Aldraihem and 

Baz [12] enhanced the power output and increased the bandwidth simultaneously by 

connecting the conventional PEH to a dynamic magnifier. Based on the same idea, Zhou, 

Penamalli [17] investigated a PEH with multi-modes. Both simulation and experimental 

results showed that the power output of the harvester can be magnified at multiple resonant 

frequencies. The aforementioned research is all based on the multi-modal concept. Other 

researchers revealed the usefulness of nonlinearity to enhance wideband energy harvesting 

[10, 13, 18]. Tang and Yang [19] proposed a nonlinear PEH by introducing a magnetic 

interaction between the energy harvesting beam and a magnetic oscillator. Both simulation 

and experimental results demonstrated the increase of the operating bandwidth of the 

nonlinear energy harvester. Soliman, Abdel-Rahman [20] first proposed achieving wideband 

vibration energy harvesting by introducing a stopper to create impacts with the mechanical 

system. However, although the operation bandwidth was increased, the amplitude of the peak 

in voltage frequency response was decreased. Based on a similar idea, Liu, Lee [21] also 

increased the operating frequency bandwidth of the traditional 1DOF PEH by introducing 
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mechanical stoppers. To extend this idea, Liu, Cheng [22] recently proposed a 2DOF PEH 

with a stopper, in which, the piezoelectric transducer was coupled with the primary oscillator, 

the stopper was installed on the base in a way that the impact may occur between the primary 

mass and the stopper during vibrations. Such configuration may cause problem in practical 

use since we always prefer that the harvester has all the components included in a standalone 

device rather than some components on the base. Both analytical and experimental results 

showed that their proposed 2DOF PEH exhibited wider operation bandwidth but the power 

output amplitude was decreased. Other investigations of impact engaged nonlinear systems 

for energy harvesting performance are reported in [23-26].  

In this paper, an impact engaged 2DOF PEH with a new arrangement of mechanical stoppers 

is proposed. Different from all the impact engaged energy harvesters studied in the existing 

literature, instead of placing stoppers on the base [20-22, 25], we propose to place the 

stoppers onto the body with primary DOF, which introduces different dynamics worth 

exploring for broadband response. First, the mechanical model of the proposed system is 

developed using a piecewise linear stiffness function to emulate the impact behaviour during 

vibrations. The working principle of the potentially enhanced dynamic motion and the 

extended frequency response is qualitatively explained in prior to an analytical study. Then, 

the analytical solution to the piecewise linear model is derived by using the averaging method. 

The obtained frequency response of the system confirms the impact engaged nonlinear 

behaviour and their benefits for broadband performance. Subsequently, the mechanical 

system is integrated with a piezoelectric transducer, that is, the electromechanical model is 

built and the energy harvesting performance is numerically evaluated. The open circuit 

voltage output of the impact engaged 2DOF PEH is compared with that of the conventional 

linear 2DOF and 1DOF counterparts. The comparisons demonstrate that the new impact 

engaged 2DOF energy harvester can not only generate more energy output under the same 

excitation condition, but also exhibit a wider operation bandwidth. A parametric study is then 

conducted to investigate the effect of the stopper distance on the open circuit voltage output. 

At last, power output comparisons also confirm the superiority of the proposed impact 

engaged 2DOF PEH. 
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2. Conceptual mechanical model and theoretical analysis 

2.1. Governing equations 

The schematic of the proposed impact engaged 2DOF system is illustrated in Figure 1, where 

m1 and m2 represent the oscillator masses; k1 and k2 are the suspension spring stiffnesses; K 

denotes the stiffness of the stopper which is fixed onto the primary oscillator mass m1. 

 

Figure 1. Schematic of a 2DOF mechanical system with stoppers 

The governing equations of this 2DOF piecewise linear system can be written as: 

 
     

     

1 1 1 1 1 1 2 1 2 2 1 2 1 2 1

2 2 2 2 1 2 2 1 1 2 2

,

,

m x c x k x c x x k x x p x x m y

m x c x x k x x p x x m y

        


      

  (1) 

where x1 and x2 denote the relative displacements to the base of the primary oscillator mass m1 

and the secondary oscillator mass m2, respectively; y denotes the absolute displacement of the 

base;  1 2,p x x  is the nonlinear force associated with the impacts and can be expressed as, 

  

   

 

   

1 2 1 2

1 2 1 2

1 2 1 2

, 0

K x x d x x d

p x x d x x d

K x x d x x d

    


    


   

  (2) 

where d  denotes the stopper distance. This piecewise linear stiffness function emulates the 

impact behaviour between the two oscillator masses: the change in the spring stiffness 

happens when impacts occur. As shown in Figure 2, x represents the distance between m1 and 

m2. The interaction force between m1 and m2 is  f x . When the relative distance between m1 

and m2 is less than d, the interaction force is    2 1 2f x k x x  ; once the relative distance 

between m1 and m2 exceeds d, the interaction force becomes      2 1 2 1 2,f x k x x p x x   . 

For simplicity, the collisions between the secondary mass and the stoppers are assumed to be 

completely elastic and the impact induced damping is excluded.  
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Figure 2. Piecewise linear stiffness for emulating stopper behaviour 

By defining following parameters:
10 1 1k m  ,

20 2 2k m  , 1K k  ; 2 1m m  ;

1
1

1 12

c

k m
  , 2

2

2 22

c

k m
  , the governing equations can be rearranged as follows: 

 

     

     

2 2 2

1 1 10 1 10 1 2 20 1 2 20 1 2 10 1 2

2 2

2 2 20 2 1 20 2 1 10 1 2

2 2 ,

2 ,

x x x x x x x g x x y

x x x x x g x x y

      


   



         



      


  (3) 

  

   

 

   

1 2 1 2

1 2 1 2

1 2 1 2

, 0

x x d x x d

g x x d x x d

x x d x x d

    


    


   

  (4) 

2.2. Working principle 

The 2DOF linear system is described by the two governing equations: 

 
 

 

1 1 1 1 2 1 2 1

2 2 2 2 1 2

m x k x k x x m y

m x k x x m y

    


   

  (5) 

Its two natural frequencies can be easily calculated as:  

 
     

2

2 1 1 2 2 2 1 1 2 2 1 2 1 22 2

1 2

1 2

4
,

2

k m k k m k m k k m m m k k

m m
 

    
   (6) 

Supposing the base excitation to be in the harmonic form, by adopting Fourier transform, the 

displacement amplitude ratio between the secondary and the primary masses is given by:  

  
2

2 2 1 2 2 1 2 1 2

2

1 1 2 2 2 1 2

X m k m k m k m m
r

X m k m k m m






  
 

 
  (7) 

in which X1 and X2 are the amplitudes of mass m1 and m2, respectively. Substituting the 

calculated frequencies 1  and 2  from Eq.(6) into Eq.(7), the displacement amplitude 

ratios for two vibration modes can be obtained. It can be shown that for the first mode, the 
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motions of the two oscillators are in phase with each other, i.e.,  1 0r   ; while for the 

second mode, the motions of the two oscillators are out of phase, i.e.,  2 0r   . For given 

parameters with 1 0.056 kgm  , 2 0.0084 kgm  , 1 1500 N / mk  , 2 144 N / mk   

(damping ratios 1 0.01  , 2 0.006  ), the displacement responses of the system around the 

first natural frequency and the second natural frequency are shown in Figure 3(a) and (b) 

respectively for a demonstration of the above phenomena. 

  

(a) (b) 

Figure 3. Dynamic responses of: (a) in-phase motion around first mode; and (b) out-of-phase motion 
around second mode 

From the perspective of energy harvesting, the motion of the piezoelectric coupled oscillator 

is expected to be as intense as possible. Based on the in-phase motion feature of the two 

oscillators, it is proposed here to create impacts between the two oscillators around the first 

natural frequency. To achieve this, stoppers are installed onto the primary oscillator mass 1m  

in a manner so that the secondary counterpart may be able to collide with them when the 

relative displacement between the primary and the secondary masses becomes large enough 

during vibrations around the first natural frequency. In this way, it can be speculated that 

when they collide with each other during the in-phase motion, i.e., moving towards the same 

direction, the secondary mass will give a positive impulse to the primary mass. Thus the 

primary mass will undergo a more vigorous motion due to the additional energy imparted by 

the secondary mass during the impact. Therefore, by attaching the piezoelectric transducer to 

the primary oscillator, more energy output can be expected to be obtained. Similarly, it can be 

also speculated that if the impact happens during the out-of-phase motion, a negative impulse 

will be given to the primary mass by the secondary mass, as they move in the opposite 
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directions. This will in turn result in a suppression of the dynamic motion of the primary 

oscillator. Therefore, considering that the energy harvesting performance is closely related to 

the dynamic motion of the primary oscillator, it is suggested to tune the stoppers to avoid 

impacts to occur during the out-of-phase motion, i.e., around the second natural frequency 

range. 

By introducing the stoppers, one can infer that by coupling a piezoelectric transducer with the 

primary oscillator, a higher power output is expected to be extracted. At the same time, as 

mechanical stoppers can induce impacts and introduce hardening nonlinear behaviour, the 

frequency response is expected to be extended to the high frequency range beyond the linear 

resonance, implying a broadband operation ability.  

3. Analytical solution 

3.1. Dimensionless modelling 

Suppose that the base excitation is harmonic,    cosy t Y t . By defining the following 

dimensionless parameters: 1
1

x
u

Y
 , 2

2

x
u

Y
 , 20

10





 , 

10




  , 10t  , 

2

10d

A


  , the 

dimensionless governing equations are obtained as follows  

 

 

     

     

2
2 21 1 1 2

1 1 2 1 2 1 22

2
2 22 2 1

2 2 1 1 22

2 2 , cos

2 , cos

d u du du du
u u u h u u

d d d d

d u du du
u u h u u

d d d

    
   


  

   

  
          

 


            

  (8) 

  

   

 

   

2

1 2 1 2

1 2 1 2

2

1 2 1 2

, 0

u u u u

h u u u u

u u u u

 

 

 

     


    


   

  (9) 

Let 1 1u u and 2 1 2u u u  . The governing equations become: 

 

   

   

2
2 21 1 2

1 1 2 2 22

2
2 22 2 1 2

2 2 2 1 1 2 2 22

2 2 cos

2 2 2 0

d u du du
u u h u

d d d

d u du du du
u h u u u h u

d d d d

    
  


     

    


       



         


 (10) 
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  

   

 

   

2

2 2

2 2

2

2 2

0

u u

h u u

u u

 

 

 

   


   


 

  (11) 

3.2. Frequency response 

The averaging method [27] is used to derive the analytical solution to this model. The solution 

is assumed to be in the form as: 

    cos   u a    (12) 

where the amplitude vector a  and the phase angle vector   are both slow varying 

variables with respect to dimensionless time  . Along with the assumption: 

    sin     u a    (13) 

Eq.(12) and Eq.(13) imply: 

 
   

   

1 1 1 1 1

2 2 2 2 2

cos sin 0

cos sin 0

a a

a a

    

    

      


     

  (14) 

Substituting Eq.(12) and Eq.(13) into Eq.(10) yields: 

 

   

     

       

   

     
 

 

1 1 1 1 1

2

1 1 1 1 1

1
2 2

2 2 2 2 2 2

2 2 2 2 2

2 2

2 2 2 2 2 2

1 1

sin cos

2 sin 1 cos1

2 sin cos cos

sin cos

1
2 sin cos

1
2 sin

a a

a a
f

a a h u

a a

a a h u

a

    

    

       

    

 
     



  

    

         
  
            

    


        

    


     

 

1 1 1 2 2 2 2

2

2 2

cos 2 sin

cos

a a f

a

    

  








  
  
  
  

        
     
   

 (15) 

Solving Eq.(14) and Eq.(15) for 1a , 2a , 1  and 2 , one obtains: 

 

1 1 1

1 1 1

1

2 2 2

2 2 2

2

sin

1
cos

sin

1
cos

a f

f
a

a f

f
a



 



 



  






 


  (16) 
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where 
1 1     and 

2 2    . Since 1a , 2a , 1  and 2  are considered to be slowly 

varying parameters, it can be assumed that their average values remain constant over a cycle 

period of 2 : 

 

   

     

     

2
2 1 1 2 2 1 2 2 1 2

1 1 1 1 20
1 2 0 2 1 0 2 1

2 2

1 2 2 1 2 2 1 2

1 1 1 1
2

1 1 1

2 2 cos sin1 1
sin

2 2 sin 2 sin sin 2 sin

1 2 sin cos1 1 1
cos

2 2 cos

a a a
a f d

a

a a a
f d

a a

          
 

          

        
  

    

        
   

         

     
   

  



     

      

  
 

 

 

2

0

2 0 2 1 0 2 1

2

2 2 2 1 2 2 1 1 2 1 1 2 1
0

2 2

2 2 0 0

2 2 2 1

2 2

1 1 2 1 1 2

2 cos sin 2 cos

1 1
sin 2 1 2 cos sin

2 2

1
1 2 sin 21 1 1

cos
2 2

2 sin cos

a

a f d a a a

a a
f d

a a
a a





     

           
 

 
    

  
 

     

 
 
 

      

         



     

   


    





 

2

0

1

















 
   

  
  



  (17) 

in which  0 2arccos a  . For the steady-state response solution of the system, 1a , 2a , 1  

and 2  are considered to be zero. Hence the following relations are obtained: 
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By eliminating 1  and 2 , two implicit equations describing the relations between 

dimensionless amplitudes ( 1a , 2a ) and dimensionless angular frequency ( ) are obtained: 
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3.3. Analytical results 

From Eq.(19), the frequency response of the displacement for the primary mass 1m  can be 

calculated. The frequency response of an example system with selected dimensionless 

parameters of 0.15  , 0.8  , 1 0.01  , 2 0.006  , 80  , 10   is demonstrated 

in Figure 4. The parameters are carefully selected to make the impacts to occur around the 

first mode. It can be noted that the amplitude of the first peak is higher than its linear 

counterpart and shifts towards higher frequency, but the second peak in the frequency 

response is unchanged. It is worth mentioning that in the existing literature, the introduction 

of stoppers always leads to suppressed frequency response curves [20-22]. In the proposed 

configuration by installing stoppers onto the primary DOF member rather than the base, the 

introduction of stoppers, on the contrary, leads to an enhanced frequency response curve, as 

compared to the linear 2DOF counterpart. For the model with same dimensionless parameters 

( 0.15  , 0.8  , 1 0.01  , 2 0.006  , 80  , 10  ), a simulation has been 

conducted. A broadband chirp excitation is applied and upward frequency sweep is performed. 

The comparison in Figure 4 shows that, in general, the numerical simulation result agrees well 

with the analytical prediction and thus establishes the benefit of the proposed configuration. It 

should be mentioned that the response is not an exact steady-state response during the chirp 

excitation, and as a result some non-smooth part in the response curve is expected when 

impacts occur. 

 

Figure 4. Analytical solution and numerical simulation of dimensionless relative displacement of 
primary mass m1 of proposed system as compared to that of linear 2DOF system 
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4. Energy harvesting performance evaluation 

4.1. Electromechanical model 

 

 

(a) (b) 

Figure 5. (a) Schematic of proposed 2DOF PEH with stoppers; and (b) conceived practical prototype 

 

Based on the above phenomenon in the impact engaged 2DOF system, by attaching a 

piezoelectric transducer with the primary oscillator of the 2DOF system proposed in Section 

3, one can expect to obtain an energy harvester with both enhanced power output and 

operation bandwidth. Figure 5(a) and (b) show the schematic and the conceived practical 

prototype, respectively. The electromechanical governing equations of the proposed energy 

harvesting system can be modified as: 
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  (20) 

where   is the electromechanical coupling coefficient; SC  is the clamped capacitance of 

the piezoelectric transducer; R  is the electric resistor connected to the piezoelectric 

transducer; and v is the voltage across R . 

4.2. Open circuit output voltage and comparison 

In the comparison study, parameters of the system under investigation are listed in Table 1. 

Under the excitation of RMSa = 2 m/s2, for a given stopper distance d = 5mm, Figure 6(a) 

compares the open circuit voltage responses for up-sweep of the impact engaged 2DOF 

energy harvesting system with that of the linear counterparts. It can be seen that the benefit of 

the linear 2DOF PEH is that two peaks appear in the frequency response compared with the 

linear 1DOF counterpart, but the appearance of the additional peak is at the sacrifice of the 
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voltage amplitude, resulting in an inefficient energy harvesting performance. It is worth 

mentioning that through carefully tuning the parameters of the secondary oscillator, one could 

achieve a broadband linear 2DOF energy harvester [16], while the design of such a broadband 

linear PEH is out of the scope of this paper. By introducing the stoppers, it can be found that 

the impact engaged 2DOF PEH inherited the double-peak feature of the conventional 2DOF 

PEH, and it is noteworthy that the amplitude of the first peak in the frequency response is 

significantly increased. The maximum open circuit voltage achieved by the impact engaged 

2DOF PEH is about 34.48V, which corresponds to an increase in voltage of 27% and 38% as 

compared to those achieved by the linear 1DOF PEH (27.06V) and 2DOF PEH (24.95V), 

respectively. Even compared with the linear 1DOF PEH, the impact engaged 2DOF PEH 

exhibits a higher voltage output around the first peak. Assume the required minimal power 

supply voltage is 10V, the impact engaged 2DOF PEH provides a bandwidth of 5.43Hz, 

which means a 302% increase compared to that of the linear 1DOF PEH (i.e., 1.35Hz) or a 

308% increase compared to that of the linear 2DOF PEH (i.e., 1.33Hz). However, for down-

sweep, the performance of the impact engaged 2DOF PEH is deteriorated with lower peak 

around the first resonance and no apparent benefit in terms of bandwidth. 

Table 1. System parameters 

Parameters Physical meanings Values Units 

1m  Primary oscillator mass 0.056 Kg 

2m  Secondary oscillator mass 0.0084 Kg 

1k  Primary oscillator stiffness 1500 N/m 

2k  Secondary oscillator stiffness 144 N/m 

K  Stopper stiffness 15000 N/m 

1c  Primary oscillator damping 0.1833 Ns/m 

2c  Secondary oscillator damping 0.0132 Ns/m 

  Electromechanical coupling coefficient 1.3e-03 N/V 

SC  Capacitance 180 nF 

R  Resistance 1e20 Ohm 
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(a) (b) 

Figure 6. (a) Voltage frequency response comparison of various configurations from numerical 
simulation; and (b) Time domain response at 22.7Hz 

 

Based on the up-sweep simulation results, one can conclude that the impact engaged 2DOF 

PEH shows a relative advantage over both the conventional 1DOF and 2DOF PEHs in terms 

of both the open circuit voltage output and the operation bandwidth. 

It is worth mentioning that the frequency responses obtained from numerical simulations 

shown in Figure 6(a) are not always in steady-state. At some frequencies or within some small 

frequency ranges (marked in red circles in Figure 6(a)), the system does not show steady state 

response (for example, the time domain response of the voltage at 22.7Hz shown in Figure 

6(b)). Though it does not reach the steady state during the sweep simulation, the response is 

quite close to steady state and its contribution to energy harvesting should be considered. 

Therefore, considering the existence of not exact steady state responses, the maximal voltage 

amplitude is not a good figure of merit to characterize the system performance. Hereinafter, 

for the sake of fairness, the root mean square (RMS) value will be used to characterize the 

energy harvesting performance of the system. 

4.3. Effect of stopper distance d on open circuit voltage 

The stopper distance d plays an important role on the impact behaviour during vibrations. 

Therefore, this subsection studies the effect of stopper distance on the open circuit voltage 

output of the proposed impact engaged 2DOF PEH. Figure 7 shows the frequency responses 

for up-sweep of the impact engaged energy harvesting systems with different stopper 

distances d. It is found that with a decrease in the stopper distance, the amplitude of the first 

peak first increases then decreases. The physical explanation of this phenomenon is that with 
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a smaller stopper distance, the impact occurs at a position nearer to their equilibrium positions 

where there exist a larger speed difference between the primary and the secondary masses. 

Therefore, during the impact, the secondary mass imparts a larger impulse to the primary 

mass, leading the primary mass to undergo a more intense motion. However, when the 

stopper distance further significantly decreases, the relative motion of the inner oscillator will 

be drastically restricted which leads to a reduction in speed difference between the primary 

and the secondary masses. Thus, a further decrease in the stopper distance will conversely 

result in the decrease in the amplitude of the first peak. Besides that, with the increase of the 

stopper distance, the second peaks in the voltage responses for cases with different stopper 

distance (d =5, 7, 9, 11, 13 mm) are the same with that of the linear 2DOF counterpart. This is 

because the system parameters are selected in such a way so as to avoid the occurrence of 

impact in the frequency range around the second peak. As explained in Section 2.2, the 

occurrence of the impact between two oscillator masses around the second peak frequency 

range will lead to the suppression of dynamic motion of the primary oscillator, thus, resulting 

in the deterioration of the energy harvesting performance. The case of d = 3 mm shown in 

Figure 7 offers an example to demonstrate this. The stopper distance is reduced, so the two 

oscillator masses will collide with each other around the second peak frequency range. 

Therefore, as predicted the second peak is suppressed compared with that of the linear 2DOF 

counterpart. 

 

Figure 7. Voltage frequency responses from up-sweep simulation with different stopper distance d 

4.4. Effect of resistance (R) on power output 

The electrical circuit is also an important component that constitutes the energy harvesting 

system. As electromechanical coupling coefficient and the clamped capacitance of the 

piezoelectric transducer are inherent characters of the piezoelectric product, only the 
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resistance is easily customer tunable, thus only the effect of resistance on the power output of 

the proposed impact engaged 2DOF PEH is investigated in this section.  

From Figure 7, as the case with d = 7 mm provides the highest output voltage, it is chosen to 

continue the following case study. Figure 8(a) and (b) show the power outputs for up-sweep 

of the proposed impact engaged 2DOF PEH with various resistances under weak and strong 

coupling conditions, respectively.  

  
(a) (b) 

Figure 8. (a) Power output comparison of various PEH configurations for different resistances in weak 
coupling condition; and (b) power outputs of proposed 2DOF PEH with stoppers for different 

resistances in strong coupling condition 

For both cases (Figure 8(a) and (b)), it is noted that the power output is quite sensitive to the 

resistance, to ensure a high power output, one should always select an optimal or near-optimal 

resistance. For the case under a weak coupling condition ( =1.3e-03 N/V, i.e., ke=0.08, 

where the dimensionless electromechanical coupling coefficient [16] is 
2

2

1

e S
k

C k


 ) as shown 

in Figure 8(a). At the power level of 1 mW, the proposed impact engaged 2DOF PEH with 

near-optimal resistance of 50 k  provides a bandwidth of 3.82 Hz, which represents a 

232.1% increase compared to the bandwidth of 1.15 Hz of the linear 1DOF and a 289.8% 

increase compared to the bandwidth of 0.98 Hz of the linear 2DOF PEH, respectively. The 

maximum power output of the proposed impact engaged 2DOF PEH with near-optimal 

resistance of 50 k  is 7.66 mW, which represents a 64.4% increase and a 118.9% increase  

as compared to those of the linear 1DOF PEH (i.e., 4.66 mW) and the linear 2DOF PEH (i.e., 

3.50 mW), respectively. For the case under a strong coupling condition ( =6.6e-03N/V, ke 

=0.4) as shown in Figure 8(b), besides the similar increases in bandwidth and maximum 

power output, one can note that with the increase of the resistance, the bandwidth of the first 

peak in power response of the proposed impact engaged 2DOF PEH shifts towards the right 
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hand side i.e., the higher frequency direction. It is noteworthy that the resistance can only 

have effects under strong coupling conditions, because the primary oscillator system has a 

resistance-dependent effective stiffness due to the existence of the piezoelectric transducer 

[28]. But only when the electromechanical coupling is strong, the resistance-dependent 

feature becomes evident.  

5. Conclusions 

This paper has proposed an impact engaged 2DOF PEH with a new arrangement of 

mechanical stoppers. The working principle of the impact engaged 2DOF mechanical system 

is explained and the primary oscillator system is supposed to have an enhanced dynamic 

motion and extended frequency response. The mathematical model of this nonlinear system is 

developed by emulating the impact behaviour as a piecewise linear stiffness. The analytical 

solution is derived by using the averaging method to obtain the frequency response of the 

proposed mechanical model. From the analytically calculated frequency response, the 

enhanced dynamic motion and extended frequency response of the primary oscillator system 

are confirmed. Since the energy harvesting performance is closely related to the dynamics of 

a mechanical system, by integrating the primary oscillator system with a piezoelectric 

transducer, it can be easily speculated that the proposed energy harvester can exhibit an 

enhanced energy output and widened operation bandwidth. According to a parametric study, 

the performance of the proposed impact engaged 2DOF PEH in terms of both the bandwidth 

and the open circuit voltage amplitude can be further enhanced by tuning the stopper distance. 

With a decrease in the stopper distance, the amplitude of the first peak in open circuit voltage 

response increases. The superiority of the proposed energy harvester over the conventional 

linear 2DOF and 1DOF energy harvesters is demonstrated through numerical simulations. In 

the selected case study, under the same conditions, the proposed impact engaged 2DOF PEH 

can achieve a significant increase in bandwidth and maximum power output amplitude 

compared to those of the linear 1DOF and 2DOF PEH. The enhancements in the bandwidths 

are 232.1% and 289.8% compared to those of the linear 1DOF and 2DOF PEH, respectively. 

The maximum power output amplitude is enhanced by 64.4% and 118.9% as compared to 

those of the linear 1DOF and 2DOF PEH, respectively.  
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